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Monte Carlo simulation of linear polymer melts in shear flow. Effect of
shear stress and confined space on chain dynamics
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Abstract

Linear homopolymer melts under shear stress were studied using a Monte Carlo method in a dense system, using the cooperative motion
algorithm. The simulations were performed in a plane-parallel geometry, between reflective walls, for chains up to 640 beads (entangled). Be-
havior of the melts under shear stress was simulated by appropriate biasing of the bead move probability. Chain dynamics was monitored during
reaching the equilibrium flow in the step-shear experiment (creep) simulation, in the equilibrium flow and during melt relaxation. The results
were compared with those obtained for non-flowing melt. Significant differences between step-shear and steady-state simulations were observed,
while chain dynamics during recovery is almost identical with that in non-flowing melt. Dynamics of the melt depended strongly on the chain
length and shear stress, showing nonlinear effects for long chains. Chain orientation, coil deformation and relaxation were analyzed. Relaxation
time of long chain decreased by orders of magnitude under shear following the power law. Diffusion of beads and chains was analyzed and an
anomalous diffusion was observed, also in the directions perpendicular to the flow direction. In the flowing melt the effect of confined space was
important, even if the wall spacing was much bigger than Rg.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Rheological behavior of polymers under shear stress is of
great interest both from technological and scientific point of
view [1e4]. Practical aspects involve polymer processing and
lubrication, also in biological systems. In spite of a large
body of results, coming mainly from experiments, the under-
standing of behavior of polymer melts under shear flow and
possibilities of a theoretical description are still limited, espe-
cially on the molecular level. Comparing with the relatively
well-understood flow of low molecular weight liquids, in poly-
mer melts and solutions we deal with significant changes of
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chain conformation in the flow field and for long chains also
with entanglements. The former effect is well-known and it is
believed to be responsible for shear thinning of polymer
liquids. Generally polymers show a strong dependence of vis-
cosity on the shear rate (usually described in the first approxi-
mation by the well-known power law [1,2]). Providing an
insight into the flow induced phenomena on the molecular level
such as coil deformation and chain orientation is of great impor-
tance. Therefore computer simulations can be very helpful.

The most suitable simulation method is nonequilibrium mo-
lecular dynamics (NEMD) applied successfully for simple liq-
uids. A serious drawback of using NEMD for polymers is that
the calculations are complex and time consuming, thus the sim-
ulations cover relatively short time (up to ca. 100 ns) while re-
laxation times of chains of hundreds of beads are ca. 105 times
longer than those of a single bead. The systems comprising ca.
104 monomers at most (for simplified models) are used which is
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not sufficient to have good averaging of long chain parameters.
The results obtained for simple and complex fluids (including
polymers) using mostly the finitely extendable nonlinear elastic
(FENE) model have been recently summarized in Ref. [5]. It
has been found that even simple liquids show shear rate depen-
dent viscosity. The well-known crossover in the zero-shear vis-
cosity, related to entanglements was also obtained. Simulations
using detailed models of linear and branched alkanes having up
to 30 carbon atoms [6e8] have already shown that such rela-
tively short, not entangled molecules change their conforma-
tions and orientation under shear, especially in confined space
and in the vicinity of an impenetrable wall.

In Monte Carlo simulations the motions of polymer chains in
the melt are considered as a series of random displacements of
segments. In the flowing melt such segmental motions are no
longer random, but they have a preferred direction resulting
from an external stress. This effect can be simulated by modi-
fying probabilities of individual jumps accordingly [9e12].
Several groups used various simulation methods to study mac-
romolecules in solution, there are, however, only few papers
reporting simulations of polymer melts under shear flow.
Baschnagel and Binder [10] considered the effect of shear de-
formation of a dense polymer confined between repulsive walls
using a coarse-grained bond-fluctuation model. Their system
comprised 403 beads and typical chain length was 10. Pakula
[11] simulated the effect of shear flow on microphase separation
of diblock copolymers using the cooperative motion algorithm
(chain length 40). Gleiman and Dorgan [12] used the same al-
gorithm to simulate Poiseuille flow of homopolymer melt (up
to 256 segments). In all the cases chain deformation and orien-
tation were found, and in Refs. [10] and [12] also an influence of
the walls was observed. Mavrantzas and Theodoru [13,14] per-
formed atomistic Monte Carlo simulations of elongation flow of
polyethylene melt in atomistic detail (up to 1000 united atoms)
using their end-bridging algorithm. They obtained linear depen-
dence of chain orientation and conformation tensor on the stress
difference, conformity to the stress optical law and melt viscos-
ity for shorter, unentangled chains.

Regardless of the method employed, simulations of the dy-
namics of long polymer chains can be performed in a reason-
able time only using the coarse-grained approximations. The
effectiveness of the simulation algorithm is crucial for the sim-
ulation of melt flow because due to the long range effects the
simulated system must be big enough and long relaxation
times of big macromolecules need simulation of the long
time behavior e at least four orders of magnitude longer
than for small molecules. Among various simulation methods
used to represent behavior of polymers the cooperative motion
algorithm (CMA) [15e18] used in the present work is a unique
one because it allows to simulate really dense systems, corre-
sponding to polymer melts and it is sufficiently efficient.

In the present work we study the behavior of homopolymer
melts between the repulsive walls under shear stress, simulated
using a simple bias field. Jump probability bias is linearly de-
pendent on bead position with respect to impenetrable walls,
which reproduces well behavior of simple liquids in Couette
flow. In contrast to Poiseuille flow profile used in Ref. [12] it
allows a straightforward analysis of the influence of stress
and stress gradient on various parameters. However, as we dem-
onstrate, for longer molecules the flow profile of the polymer
melt is different and depends nonlinearly on the molecular
weight and on the shear stress. We study in detail chain dynam-
ics in four cases corresponding to step-shear (creep), steady-
state flow and melt relaxation experiments, in comparison
with non-flowing melts of the same chain length between repul-
sive walls. The effect of the confined space (the distance be-
tween the walls) cannot be avoided in such simulations and is
also discussed. Broad range of chain length studied makes pos-
sible better analysis of shear and confinement effects, also for
entangled melts.

2. Simulation method

In the simulations using cooperative motion algorithm
(CMA) ensembles of beads located at lattice sites are con-
nected by non-breakable bonds to form structures representing
macromolecules of various topologies [15e20]. All the lattice
sites are occupied in order to represent dense systems, like
polymer melts. The presented results are obtained by simula-
tions on an fcc lattice, where the bonds have length a ¼

ffiffiffi
2
p

.
The possible bond angles are a¼ 60�, 90�, 120� and 180�

with degeneracy da¼ 2, 4, 2 and 1, respectively. The coordi-
nation number of the lattice is equal to 12, i.e., every monomer
has 12 nearest neighbors.

The systems are considered under the excluded volume con-
dition, which means that each lattice site can only be occupied
by a single molecular element (bead). In such systems strictly
cooperative dynamics is used, consisting in rearrangements sat-
isfying local continuity of the simulated system (no empty lat-
tice sites are generated). A segment of one chain can move only
if other segments of different chains move simultaneously. This
is realized by local motions consisting in displacements of a cer-
tain number of molecular elements along closed loops, so that
each element replaces one of its neighbors in such a way that
the sum of displacements of the elements taking part in the
rearrangement is zero (continuity condition). During such
rearrangements the model macromolecules undergo conforma-
tional transformations, preserving, however, their identities
given by the number and the sequences of elements in the poly-
mer. Monitoring positions and/or orientations of chain elements
in time allows to detect the dynamics in such a system. Quanti-
ties characterizing the system are calculated only between co-
operative rearrangement steps. A time step corresponds to the
number of simulation steps after which an average of one at-
tempt to move each bead was made. More details about the al-
gorithm used are given elsewhere [16e18]. The simulation of
this type is very efficient and allows, for example, to observe
a system consisting of a large number of beads (e.g., 320 linear
chains of length N¼ 100) within the time period by factor 106

longer than the relaxation time of a single bead, using a personal
computer.

The model used consisted of 40� 20� 40 up to 160�
40� 160 beads in x-, y- and z-directions, respectively (up to
ca. 106 beads). The repulsive walls were placed at x¼ 0 and
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x¼ xmaxþ 1. We usually used asymmetric lattices with the x-
and z-dimensions bigger. The xmax was made bigger because in
this direction periodic boundary conditions were not applied
and it should be by at least an order of magnitude bigger
than the radius of gyration of the chain, to avoid strong con-
finement effects. The z-dimension was made big because the
coil dimension in this direction increases even several times
under shear flow. The chain length was N¼ 4, 10, 20, 40,
80, 160, 320 or 640. In order to generate initial equilibrium
states, a dense system of chains was subjected to motion under
athermal conditions for a time much longer than the chain
relaxation time.

To reduce boundary effects the periodic boundary condi-
tions have been employed in the y- and z-directions. The
plane-parallel flowing system is asymmetric in the direction
of the flow velocity gradient. Therefore we cannot use periodic
boundary conditions in this direction (x-direction in our case)
and we have to introduce two impenetrable walls (non-inter-
acting, purely reflective in these simulations). Therefore the
effect of the shear flow on molecular conformations and dy-
namics coexists with the effect of constrains brought about
by the walls. Their relative importance, dependent on the dis-
tance from the wall, should be estimated.

In MC simulations a straightforward method of implement-
ing a shear flow is an appropriate biasing of the probability of
an individual bead move. It can be done in slightly different
ways assuming that the total probability of move (averaged
over all directions) is not changed by the shear flow. Pakula
[11] used a simple biasing method, changing only relative
probabilities in forward and backward directions, leaving
probabilities in the perpendicular direction unchanged. In the
model of Baschnagel and Binder [10] the biasing influences
the probabilities in all directions. It makes possible simulation
of a highly biased flow, increasing the probability of the jump
in the flow direction at the expense of the Brownian move-
ments in the transverse direction, which seems, however, not
realistic under athermal conditions. The same method was
used by Gleiman and Dorgan in their simulation of Poiseuille
flow [12]. We compared both methods for the same system and
found that for low and medium biasing the differences in the
determined parameters and velocity profiles are of secondary
importance so we used much more efficient and simpler bias
algorithm of Pakula. As we shall demonstrate, in the case of
polymer melt the bias profile between the walls is more impor-
tant than the details of the biasing the individual bead move.

The shear flow was simulated by introducing biased proba-
bility of the bead movement in the z-direction. Since the coor-
dination number is 12, there are four moves possible in the xe
y plane (z-component equal to zero) and 8 with non-zero z-
components (4 positive and 4 negative). Biasing was realized
in such a way that the probability of the move in the xey plane
was left to be 1/12 in each direction while the probabilities of
the moves with non-zero components in positive and negative
z-directions were modified in such a way that the probability
in that say positive direction Pzþ was increased by an amount
of DP, while the probability of the move in the opposite direc-
tion Pz� was decreased by DP so that the total probability of
the attempt to move in positive and negative directions was
unchanged, equal to 8/12. To simulate the shear flow field in
a plane-parallel geometry we introduced an x-dependent bias
of the move probability so Pzþ was dependent on the maxi-
mum bias DPmax and on the bead x-coordinate.

Two biasing profiles were used:

(i) bipolar e simulation of the case of two walls moving in
the opposite directions with the same speed. Shear field
is symmetrical with respect to x¼ (xmaxþ 1)/2 plane
(the distance between the walls is equal to xmaxþ 1).
In this case the probability bias depends on the distance
from the x¼ 0 plane according to the formula:

DPx ¼ DPmax

�
x� 0:5ðxmax þ 1Þ

0:5ðxmax � 1Þ

�

so that the probability bias is equal to zero in the center
and linearly increases to reach DPmax for the move in
the z-axis direction (þ) for x¼ xmax and �DPmax for
x¼ 1 (the move in the opposite direction (�)).

In this case

PzþðxÞ ¼
4

12
ð1þDPxÞ Pz� ¼

4

12
ð1�DPxÞ

hence the beads in the two halves of the system flow in
the opposite directions.

(ii) unipolar e corresponding to one wall moving at a con-
stant speed and the other being immobile. In this case
the probability bias depends on the distance from the
immobile x¼ 0 plane, according to the formula:

PzþðxÞ ¼
4

12

�
1� x

xmax

DPmax

�

which means that the probability bias changes from
weakly biased for x¼ 1 to fully biased (DPx¼DPmax)
for x¼ xmax. All the beads in the system flow in the
same direction.

In principle the two cases should be equivalent e they dif-
fer only by the coordinate system related to one of the walls or
related to center of mass of the melt. In our simulations they
really were at short times. Some differences were observed
at long times and they are discussed below.

Four cases were simulated:

(0e0) e non-flowing melt, DPmax¼ 0 (for comparison with
the flowing systems and as a starting point for the step-
shear flow).
(0ef) e flow starting from the non-flowing equilibrated
system (output of the case 0e0) (step-shear experiment e
creep). Chain parameters at the beginning were the same
as in non-flowing system. Some small average chain orien-
tation was due to the presence of non-penetrable walls in
the yez planes.
(fef) e equilibrium, steady-state shear flow e the simula-
tions started from the system which reached equilibrium
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under flow at the same bias (as monitored by the end-to-end
vector autocorrelation function falling down to zero e out-
put of the case 0ef or fef). Chains were therefore preor-
iented accordingly for the DPmax used in this simulation.
(fe0) e melt relaxation after flow (recovery). Initially the
system was in an equilibrium shear flow with a given
DPmax (output of the case 0ef or fef) but the simulation
was carried on with DPmax¼ 0.

3. Quantities determined

Melt flow velocity vx was monitored by calculating dis-
placements of the beads in the flow direction during one sim-
ulation time step and averaging over a yez layer having the
same x-coordinate, thus the same probability bias.

In order to characterize chain conformation the following
parameters were calculated: the average (root mean squared)
end-to-end distance

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nc

X
i

ðrN � r1Þ2
s

ð1Þ

where rN and r1 are space coordinates of monomers at chain
ends, N is the number of monomers (beads) in the chain and
Nc is the number of chains in the system.

The radius of gyration

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NNc

X
n

X
i

ðri;n� rcm;nÞ2
s

ð2Þ

where ri,n and rcm,n are space coordinates of monomer i and of
the center of mass of the n-th chain. The coil deformation in the
flowing systems was monitored calculating average values of x,
y and z components of these parameters (Rx, Ry, Rz, Rgx

, Rgy
,

and Rgz
). In this case in the above formulae three-dimensional

space coordinates ri,n, rcm,n were replaced by their x, y or z
coordinates, respectively.

In some cases, when the position dependence of a given pa-
rameter was investigated, the averaging was performed over the
ensemble of chains for which the centers of mass were in a given
yez layer. In the equilibrium case additional averaging was
performed over states of the system sampled in constant time
intervals Dt, being of the order of the chain relaxation time.

The orientation of R with respect to flow direction was
characterized by the orientation factor:

fR ¼
1

2

�
3
�
cos2 qR

�
� 1
�

ð3Þ

where qR is the angle between the end-to-end vector and the
z-axis and the averaging is performed over end-to-end vectors
of all the chains in the system.

Local chain orientation fL was characterized using not sim-
ply a bond orientation (orientation of the vector connecting
two adjacent beads) but by a two-bond vector orientation fac-
tor (orientation of the vector connecting a given bead with its
second next neighbor, i.e., n and nþ 2, with respect to the flow
direction):

fL ¼
1

2

�
3
�
cos2 q2B

�
� 1
�

ð4Þ

We found it more informative because on the fcc lattice an
average single bond orientation is the same for an extended
zigzag chain oriented along the x-, y- or z-axis thus two-
bond vector is the smallest unit which carries information on
the local chain orientation.

In order to get information about the dynamic properties of
the investigated systems the following quantities were moni-
tored in time:

(1) The end-to-end vector autocorrelation function

rRðtÞ ¼
1

N

X
N

Rð0Þ,RðtÞ ð5Þ

where R(0) and R(t) denote end-to-end vectors at time
t¼ 0 and t, respectively.

The above correlation function was used to deter-
mine relaxation times t by fitting a sum of stretched ex-
ponential functions

rfitðtÞ ¼
X

i

Ai exp

"
�
�

t

ti

�bi

#
ð6Þ

where the number of component i was 1 or 2.
(2) Mean-square displacements of monomers and of cen-

ters of mass of the chains:

r2
m ¼

1

NNc

X
Nc

X
N

�
riðtÞ�rið0Þ

	2 ð7Þ

r2
cm ¼

1

N

X
N

�
rcm;jðtÞ�rcm;jð0Þ

	2 ð8Þ

where ri(t), rcm,j(t), ri(0), rcm,j(0) are monomer and
chain center of mass coordinates at time t and t¼ 0,
respectively.

4. Results and discussion

4.1. Non-flowing polymer melts between neutral
walls e case (0e0)

Results obtained for the non-flowing systems (Figs. 1 and 2)
are very similar to those reported previously for the polymer
melt between reflective impenetrable walls with periodic
boundary conditions in y- and z-directions [21,22] (with regard
to the parameters averaged over all the system) and also for the
systems with periodic boundary conditions in three dimensions
[23]. In particular the system-averaged R2 and R2

g scale
with the chain length N, in agreement with theoretical predic-
tions (R2, R2

gwN). Close to the walls the chains are oriented
with R parallel to the walls, which results in a decrease of
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Rgx
and an increase of Rgy

and Rgz
of the chains with the center

of mass located near the wall (solid line in Fig. 1).
Chain dynamics is also very similar to the dynamics in the

bulk as illustrated in Fig. 2. It is characterized by the end-to-
end vector autocorrelation function rR which can be approxi-
mated by the stretched exponential function (Eq. (6) with
i¼ 1). The parameter b decreases with increasing chain
length. The chain relaxation time dependence on N indicates
an onset of the entanglement effects (t w Na with a> 3)
[1e4] for the longest simulated chains (N> 160).
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Fig. 2. End-to-end autocorrelation functions rR in the non-flowing system

(case 0e0) for various chain lengths (N¼ 10, 20, 40, 80, 160, 320 and 640).
4.2. Steady-state shear flow of the melts e case (fef)

Fig. 3 presents flow velocity profiles between the walls for
different chain lengths N, under constant DPmax¼ 0.8, i.e., for
the strongly biased move probability. The profiles have chain
length dependent slopes and linearities. The velocity gradients
decrease with the increasing chain length. The range in which
the profiles are linear also decreases.

The effect of DPmax on normalized velocity profiles v(x)/
DPmax is shown in Fig. 4 for the chains of length N¼ 160, for
the bipolar bias. The unipolar bias gives almost identical re-
sults, in particular where DPx approaches zero (it means that
near ‘‘immobile wall’’) the flow is not significantly affected.
It can be seen that the flow profile is nearly linear only for small
DPmax but becomes strongly nonlinear for high DPmax. Non-
Newtonian flow close to the ‘‘moving’’ walls can be explained
by the effect of spatial constraint near the walls, leading to re-
stricted mobility and different conformations of the chains ad-
jacent to the wall or being very close to it [21,22]. The restricted
mobility has stronger effect on quickly flowing chains (high
probability bias) and on long chains having more beads in con-
tact with the plane. However, it should be noted that the direct
effect of the wall does not depend strongly on the chain length
and it can be clearly seen only in the 5e8 layers adjacent to the
wall. For these layers the velocity gradient can even change sign
(see Fig. 3, chains of N> 80 and Fig. 4). This effect is probably
still underestimated since the MD simulations of Aoyagi et al.
[24] show that the layers adjacent to the walls are additionally
compressed towards the walls, which should further reduce the
molecular mobility.

Nonlinear effects observed in Figs. 3 and 4 cannot be re-
lated only to the presence of the walls since they are also ob-
served near the center. In this region DPx approaches zero but
the velocities exceed extrapolated linear values, which result
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in the velocity gradient much higher than the average value,
increasing with increasing chain length. It is true both for bi-
polar and unipolar biases, although in the latter case the wall
effect dominates in the adjacent 6e8 layers (not shown here,
but cf. Fig. 6). Nonlinearity far from the walls is probably re-
lated to the fact that different parts of a chain are subjected to
different biases but their flow must be correlated to some ex-
tent to preserve the chain continuity. We are aware of the fact
that nonlinear velocity profile implies that the shear gradient
should also be nonlinear, which in turn will modify the veloc-
ity profiles (in a different way, depending on DPmax and N ).
Thus the presented results provide a qualitative picture of
the real situation. However, it should be expected that the
appropriate correction will not be big and that the flow will
remain nonlinear. We performed some simulations using
nonlinear bias profiles, even such for which linear velocity
profiles for long chains were obtained. Such corrections do
not influence significantly the system-averaged values of the
parameters considered in the rest of this paper.

In flowing melts one can observe coil deformation and ori-
entation of the end-to-end vector in the flow direction. This ef-
fect is stronger if higher is the stress and longer is the chain.
The orientation effects become strong for high DPmax and
for long chains as should be expected. For long chains some
orientation is observed also in the non-flowing system
(DPmax¼ 0), due to the orientation of the chain end-to-end
vector near the walls as a result of the space confinement, as
shown in Ref. [21]. This effect becomes stronger with decreas-
ing ratio between Rg and the distance between the walls.

Fig. 5 shows the increase of R2 under shear. The chain ex-
tension is proportional to the increase of the free energy of the
system and it becomes important for longer chains even at low
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probability bias. The results are presented as the dependence
of the normalized average squared end-to-end distance
R2=R2

0 on DPmax in double logarithmic coordinates (R2
0 is

the corresponding value in the non-flowing melt). The sets
of values obtained for a given N are scaled using DPmax/a co-
ordinate (which corresponds to a shift by a along the DPmax

scale) to obtain a master curve. The master curve and the shift
factor dependence on N are qualitatively similar to those ob-
tained in Ref. [25] for the Rouse chain in solution. The direct
comparison cannot be made because these authors use the lon-
gest Rouse relaxation times and shear rate (not shear stress) in
their reduced coordinate system. Strict correspondence is also
not to be expected as our longest chains are above the cross-
over to the entanglement regime. Similar results were obtained
for Rg in this work and in Ref. [25]. In the athermal case, cor-
responding to high temperature, we could not obtain signifi-
cant extension and alignment of short chains under flow as
in Refs. [6e8]. These effects are, however, clearly observed
for longer chains (N¼ 80e640).

The coil deformation in the flowing system is, however, not
uniform and it depends on the position of the center of mass
with respect to the walls. Fig. 6 presents the dependence of
R2

gz
of the chains on the x-coordinate of their center of mass

for various probability biases. Generally all the chains are
the more extended the higher is DPmax. For a given DPmax

their R2
gz

increases with decreasing distance from the walls,
i.e., where they experience higher probability bias and where
they flow faster. Only in the close vicinity of the wall (6e8
layers) where their mobility is reduced, a slight decrease is ob-
served for big DPmax. The solid line shows the Rgz

dependence
in the case of unipolar flow with the same bias profile as in
a half of the bipolar system. It can be seen that it is almost
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identical except very close to the wall at which DPx¼ 0. Some
increase at low DPx is observed, similar to that in the center
of the bipolar system, but it is apparently overcome by the de-
crease of mobility close to the wall. R2

gx
and R2

gy
components

decrease under shear as compared with the values in the
(0e0) case also shown for comparison (full diamonds). R2

gx

(but not R2
gy

) shows a minimum in the very center, correspond-
ing to an anomalous maximum of R2

gz
. It suggests that this

maximum is related to high velocity gradient in this range
(Figs. 3 and 4) due to nonlinear flow.

Fig. 7 shows the end-to-end vector autocorrelation functions
for N¼ 40 and for N¼ 320 for various probability biases and in
the non-flowing systems. Chain relaxation is generally faster
under shear. In the case of long chains it is strongly dependent
on DPmax, even in weakly biased systems. For short chains
(N¼ 40) the difference between the relaxation in the non-flow-
ing and quickly flowing systems (DPmax¼ 0.8) is small, while
for long chains (N¼ 320) this difference is very important even
for DPmax¼ 0.04. Long chain relaxation in the equilibrated
flowing system follows quite well the stretched exponential
law (Eq. (7) with i¼ 1) with b¼ 0.85 (as shown by the solid
line in Fig. 7) until DPmax is not too small. For DPmax< 0.08
using Eq. (7) with i¼ 2 is necessary to obtain good fitting,
and the b2 coefficient corresponding to longer relaxation time
is equal to 1. The results for DPmax¼ 0.001 are practically
identical with those for the non-flowing melt and show quite
a different time dependence from those for DPmax¼ 0.02, al-
though the half-times are practically equal. This surprising
crossover phenomenon needs further studies.
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for the unipolar bias case, corresponding to a half of the bipolar system. The

data for the unipolar bias are shifted by 80 units along the x-axis to allow eas-

ier comparison of the two cases.

Fig. 8 presents the time dependence of rR for various chain

lengths under medium shear (DPmax¼ 0.1). Comparing with
Fig. 2 for the (0e0) case it is worth to note that the differences
between the relaxation times of long chains become smaller un-
der shear and their slopes are significantly bigger (the b coeffi-
cient in the stretched exponential function increases e.g. for
N¼ 640 from ca. 0.5 to 1). In Fig. 9 the longest relaxation times
t for all the simulated systems are plotted vs. DPmax. For the
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short chains the t dependence on DPmax is weak, while for the
longest chains studied t decreases by nearly 2 orders of magni-
tude for high shear stress. This effect corresponds to the well-
known shear thinning of polymer liquids, described by the
power law relating viscosity to shear rate: hw _gn�1 [1,2,26].
In our case it takes a form twDPn�1

max with n¼ 1.92, 1.82,
1.73 and 1.52 for N¼ 640, 320, 160 and 80, respectively (solid
lines). For shorter chains the power law applies in a narrow
range of highest DPmax which also corresponds to experimental
findings [1,2,26].

The time dependence of average square displacements of the
beads r2

m and chains r2
cm in the flowing melt is presented in

Fig. 10 (chains of N¼ 640). For so long chains practically all
the investigated time range correspond to a transition range be-
tween r2

mwt (for very short times) and the long time regime
(Fickian), where again r2

m and r2
cmwt. For the non-flowing

melt (also shown) r2
mwt0:42 and r2

cmwt0:75. Both exponents
are smaller than those expected for Rouse chains (0.5 and 1, re-
spectively). The exponents increase with decreasing N to reach
the predicted values for chains below N¼ 40 (cf. Fig. 18 be-
low). Even for N¼ 640 these coefficients are, however, bigger
than those predicted by the reptation model (0.25 and 0.5, re-
spectively [26]). It suggests that although entanglements are
important in our system, we are still in a broad crossover range
from the Rouse regime to the reptation regime [27]. It should
also be noted that the reptation model assumes immobile obsta-
cles and only in such a case so low slopes were obtained in sim-
ulations [28,29]. The different slopes can also be related in part
to an asymmetry of diffusion due to confinement between the
walls (vide infra). In the flowing melt, at times longer than
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Fig. 9. Relaxation times of the dominant (slower) relaxation process in the

flowing polymer melt plotted vs. DPmax for different chain lengths (N¼ 20,

40, 80, 160, 320 and 640, from the bottom up). Corresponding values for

the non-flowing systems (zero-shear values) are shown on the left of the

axis brake.
the corresponding relaxation time, both r2
m and r2

cm increase as
t2, i.e., the shear-induced displacement dominates. The increase
of the slope begins at longer time when DPmax is smaller, in
accordance with the increase of the relaxation time (Fig. 9).
For very small bias (below 0.01) clear observation of the t2

dependence requires unreasonably long simulation time. For
sufficiently quickly flowing melts (small N and/or big DPmax)
one can independently determine vz from the linear part of
the r2

cm dependences at long times, especially for the unipolar
biasing (vide infra) in good agreement with the local velocities
shown in Figs. 3 and 4 (when averaged over a half of the
system).

4.3. Step-shear and melt recovery

Evolution of the end-to-end vector R and of z- and y-com-
ponents of Rg in time (case 0ef) for different DPmax is shown
in Fig. 11. The coil deformation brings about an increase of
the z-components while y- and x-components decrease in the
flowing system. That is why for DPmax¼ 0.4 R2

z increases al-
most 4 times while R2 increases less than twice. For xmax< 40
and N> 80 a difference in Rg components is observed also in
non-flowing systems. Rgy

and Rgz
are equal but the Rgx

is
smaller due to the space confinement near the walls (Fig. 1).
The coil deformation increases with increasing DPmax but
the time dependence is similar for different DPmax. However,
the onset of the deformation depends strongly on DPmax. Inter-
estingly the contraction in the x- and y-directions begins ca. 3
times later than its extension, and it continues when the exten-
sion is already accomplished (see vertical line in Fig. 11b).
The time dependences of chain extension in the flow direction
and contraction in perpendicular directions are different be-
cause the extension in the z-direction is caused by the stress
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ious shear stresses.
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so it is fast, while the contraction in x- and y-directions is of
‘‘entropic’’ origin thus it is slow. An analogous difference be-
tween kinetics of chain extension in the 0ef case and contrac-
tion (fe0 case) is shown below (Fig. 13)

In Fig. 11 it can be seen that in the case of flow of non-pre-
oriented systems (case 0ef) the increase of Rg and R shows an
‘‘overshoot’’ e they initially increase above the equilibrium
value. Similar effects were observed also in other simulations
of polymer melts [12,30e32], for single chains in solutions
[33] and in the time dependence of strain in the creep experi-
ment e.g. Refs. [1,34]. A similar overshoot of the chain orienta-
tion factor is not observed (Fig. 12).

In Fig. 12 the time dependence of local (fL) and chain (fR)
orientation factors is presented. An increase of the local, two-
bond orientation begins earlier than the end-to-end vector
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Fig. 11. Time dependence of R2 (a) and z- and y-components of R2
g (b) in the

simulation of the step-shear experiment (case 0ef) for DPmax¼ 0.8, 0.4, 0.2,

0.1. Chain length N¼ 160. Vertical line is drawn to make easier the compar-

ison of the time dependence of the two Rg components.
orientation, which follows approximately the chain extension
kinetics (compare Fig. 11). However, as it increases faster,
the steady-state values are reached approximately at the same
time. It is interesting to note that both fL and fR begin to increase
not at the same time for various shear stresses, as one could ex-
pect, but the later the smaller is DPmax. The chains need also
much less time to reach higher orientation under higher stress.
It means that an increase of molecular mobility under stress is
much more important from the point of view of kinetics than
the bigger degree of coil rearrangement under bigger stress.

The time dependence of the end-to-end vector autocorrela-
tion function in the step-shear simulation (0ef) case) for two
chain lengths (N¼ 40 and 320) and various DPmax is shown in
Fig. 13. It can be seen that for N¼ 40 at DPmax¼ 0.1 the chain
relaxation is already close to the relaxation in the non-flowing
system, while for N¼ 320 the difference between the flowing
and non-flowing systems is significant also for very small
DPmax (below 0.05). The chain relaxation is close to that of
the non-flowing system for some time (the longer the smaller
is DPmax) and then it decreases very fast. Even for small
DPmax the autocorrelation function falls down abruptly, but
it takes place after longer time.

The chain relaxation in the two non-flowing systems (0e0)
(Fig. 1) and (fe0) is practically identical, independent on
chain length, while in the systems subjected to shear, (fef)
and (0ef) it is generally much faster. In spite of the different
time dependencies in the (0ef) and (fef) cases (Figs. 7 and
13) the corresponding half-times are very similar. The differ-
ences in dynamics in the four cases considered are strongly de-
pendent on chain length e for short chains the cases (0ef) and
(fef) are very similar and the differences between them (and
the (0e0) and (fe0) cases) are also small, while for long
chains the differences are important even for DPmax¼ 0.1.
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A comparison of the time dependence of various parame-
ters during creep and recovery is shown in Fig. 14. The local
orientation (empty triangles) increases faster in the (0ef) case
than it relaxes after the strain has been removed (fe0 case) but
the half-time is the same in the two cases. By contrast, the
chain orientation (lines) increases much faster in the (0ef)
case than it relaxes in the (fe0) case. It concerns both the
time range in which the relaxation takes place and the half-
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time, which is 30 times longer in the (fe0) case. The rapid de-
crease of rR in the (0ef) case can be related to the increase of
chain extension and orientation under shear. It is interesting to
note that the chain relaxation in the step-shear simulation (0ef
case) is slow, very similar to that of the non-flowing system,
until the chain orientation becomes important (c.f. full squares,
full circles and starred line). It can also be seen that the rapid
relaxation should not be related to the local chain orientation
(down triangles) but rather to the end-to-end vector orientation
that starts later but increases faster. Evolution of chain orien-
tation in time is somewhat slower than the end-to-end relaxa-
tion (c.f. solid line and full circles).

Fig. 15 shows time dependencies of the mean-square dis-
placements of beads r2

m and chains r2
cm as well as their x-, y-

and z-components
�
x2

m; y
2
m;.; z2

cm

�
in the step-shear case (0e

f) and in the non-flowing melt (case 0e0). It can be seen that
in the flowing system at longer times the total bead and chain
displacements are dominated by the z-component (in the flow
direction), thus the influence of shear stress on mobility cannot
be analyzed in detail on the basis of r2

cm and only an analysis of
its components provides valuable information. It is worth to
note that z2

cm does not follow t2 law in a broad time range, as
it was observed in the (fef) case (compare Fig. 10) but clearly
shows t1.75 time dependence over 2.5 decades before the relax-
ation time (t z 104) is reached. The x- and y-components (tri-
angles) are almost identical, except for a small difference for
very long times, the origin of which will be discussed later
on. They are, however, significantly different from the corre-
sponding values for the non-flowing melt (crosses). In the short
time range x2

m and y2
m depend on time following t0.5 law, as pre-

dicted by the Rouse model in the intermediate regime, while x2
cm

and y2
cm follow t0.75 law. However, above around t¼ 103 they
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begin to increase faster and above t z 104 follow again t0.75

time dependence. It means that the coil deformation and orien-
tation, which take place in this time range, is accompanied by
an increase in chain and bead mobilities in all directions. It is
not surprising that in the flowing systems (fef) (Fig. 10) and
(0ef) (Fig. 15) the displacements in the flow direction is bigger
as compared with the (0e0) (fe0) cases. It is, however, interest-
ing to note that the probability bias in the z-direction increases
significantly also the molecular mobility in the perpendicular
directions, in particular the x2

cm and y2
cm components (compare

triangles and crosses in Fig. 15). A small difference in the
time dependence between cases (fef) (full down triangles)
and (0ef) (empty down triangles) manifests only as a more or
less rapid increase around the relaxation time.

In principle the time dependence of y2
cm should show t1.0 de-

pendence because in this direction we should not expect neither
effect of space confinement, nor an effect of probability bias. It
is, however, not the case. Exponents bigger or smaller than one
mean that we observe an anomalous diffusion. In short and
long time ranges we observe subdiffusion (exponent equal to
0.75 e smaller than one as discussed before) but in the interme-
diate range we observe superdiffusion (exponent equal to ca.
1.75 e much bigger than one). These effects also depend on
the chain length (see below Fig. 18) but a detailed analysis is
beyond the scope of this paper.

Most probably the anomalous diffusion is the result of a non-
symmetric bead move probability. It is evidently asymmetric in
z- and x-directions, however, in the y-direction, where no asym-
metry is introduced it is not so obvious. It can be presumed that
the origin of the anomalous diffusion in this case is a broad dis-
tribution of ‘‘waiting times’’, which arises from the chain diffu-
sion in the x-direction. The chain experiences different bias
depending on the distance from the wall. It does not change
the probabilities of the displacement to neighbor sites in the
x- and y-directions, however, it changes the probability of clos-
ing the loop of the cooperative move.

4.4. Effects of walls spacing and biasing profile

The effect of confined space on chain dynamics was studied
by changing wall spacing. The effect of confinement on the
chain autocorrelation functions rR in the cases (0ef) and
(0e0) is shown in Fig. 16. In the non-flowing melt the wall
spacing in the investigated range (40e160 layers) has a negli-
gible influence on the chain relaxation (Fig. 16, rectangles), it
becomes, however, important in the flowing system. It can be
seen that in the 0ef case the effect of decreasing xmax is two-
fold: the chain relaxation is generally faster (relaxation time
decreases 2.5 times) and the relaxation at longer times be-
comes faster.

Even more spectacular is the difference in the time depen-
dence of R shown in Fig. 17. The increase of the end-to-end dis-
tance in the flowing system not only starts earlier if the wall
spacing is smaller (in agreement with the decreasing relaxation
time), but its steady-state values (indicated by the solid lines in
Fig. 17) are also considerably smaller. Moreover the overshoot
is more pronounced and relaxes faster in confined space. It
suggests that it is related in part also to the interaction between
the parts of the chains close to the wall (for which DPx is big-
ger) and those moving slowly in the center of the system, i.e., to
the velocity gradient. Most probably the outer parts which
move faster extend the chain too much at first because slowly
moving parts in the center are ‘‘anchored’’. Then the chain re-
laxes, decreasing the x-coordinate of Rg (c.f. Fig. 11b) which
reduces the difference in flow velocity experienced by different
parts. This effect is clearly observed both in unipolar and bipo-
lar flows which means that the modification of melt velocity
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near the wall is of secondary importance. The overshoot
decreases with decreasing N and for N< 40 it becomes negligi-
ble, even in confined systems with xmax¼ 20.

In all simulated cases the chain dynamics is asymmetric due
to the presence of non-penetrable walls. Additional asymmetry
is induced by the shear stress. Therefore it is interesting to ex-
amine the combined effect of the walls and shear on the time
dependence of mean-square displacements in x-, y-, and z-di-
rections. These effects were not clearly seen in the previous fig-
ures (Figs. 10 and 15) because for the chain length N¼ 640 it
would require unacceptably long computation time. Fig. 18
presents x-, y- and z-components of the displacement in the
flowing and non-flowing systems for N¼ 40. It can be seen
that, as for N¼ 640, the square dependence on time is observed
for the z-component, while the x-component tends to level off at
around 0.16 x2

max (marked by the horizontal lines) due to the re-
striction of displacement in this direction by the limiting walls.
Please note that for such a short chain, the slope of the y-com-
ponent (below and above the range in which coil deformation
and orientation take place) is equal to 1.0, as predicted by the
Rouse model. The x-components also follow t1.0 law at short
times, when confinement effects are not important yet.

For smaller wall spacing and bipolar bias one can clearly
see also another effect of the confined space: at long times
the z-component also does not follow the square law but its
slope gradually decreases from two to one (the slope indicated
in the figure). This effect is due to the diffusion of the chains in
the x-direction. A chain initially flowing say in the positive di-
rection must diffuse after some time to the other half of the
system where the probability bias is reversed and it begins
to flow back. In other words the bipolar flow leads to oscilla-
tions of chain displacement and increases its mean value but
the asymptotic behavior is the same as for the non-flowing sys-
tem e it follows normal diffusion law. This is of course not the
case for the unipolar flow, where the move probability is bi-
ased in the same direction in all the system. Therefore at least
some results obtained for these two cases are not exactly
equivalent.

It should be noted that according to Pai-Pandiker et al. [22]
the effect of confinement on static properties of polymer chains
is observed when wall spacing is smaller than 2Rg0

(Rg of the
unconstrained chain), regardless of the molecular weight. In
the case shown in Fig. 18 N¼ 40 and Rg0

¼ 4:2. Thus even
the smallest wall spacing used in this work is well above this
limit and the biggest is nearly 20 times bigger than Rg0

. In
our simulations we should be in all cases in the practically un-
perturbed regime, i.e., even in one of the ‘most confined’ case
N¼ 320 and xmax¼ 40 we have Rg0

¼ 12:2, hence Rg0
< 2xmax.

In the flowing system the chains can be expected to be even less
perturbed as we should rather compare xmax with Rgx

which is
smaller than Rg0

(e.g. for N¼ 320 and DPmax¼ 0.8 R2
gx

de-
creases almost by one half under shear). Therefore the confine-
ment effects in dynamic properties of the flowing system are
clearly seen also for the systems which are relatively big e
by ca. an order of magnitude bigger as compared with those
in which space confinement effects in the static properties of
non-flowing melts are observed.
5. Conclusions

The presented results of MC simulations of polymer melts
show that the chain dynamics and diffusion under shear stress
are significantly different than in the equilibrium melt, in agree-
ment with experiments and previous simulations. The shear in-
fluence is strongly dependent on chain length, thus in our
simulations for long chains (N> 102) it is more clearly seen
and entanglement effects can be revealed. Relaxation time of
long chains decreases by orders of magnitude under shear,
following the power law, even for weakly biased systems
(DPmax> 0.05). The time dependence of the end-to-end vector
autocorrelation function also changes (being less ‘‘stretched’’
under shear). The coil deformation and its orientation in the
flow direction increase with increasing chain length. The shear
dependence of R2 for various N can be described by a master
curve, in qualitative agreement with the results for Rouse
chains. Nonlinear dependences on shear stress are observed
both in the flow profiles and in the relaxation time shear
dependence and such effects are observed for the longest chains
studied, even for weakly biased systems.

The simulations of step-shear experiment reveal shear-
stress dependent kinetics of chain orientation and coil defor-
mation, which begin, and reach steady-state values, after dif-
ferent times, dependent on shear stresses. Attaining higher
equilibrium orientation for big DPmax takes place after much
shorter time. The chain relaxation shows a different time de-
pendence under shear, characteristic in an acceleration after
some time, close to the relaxation time. There is a qualitative
difference between chain dynamics in simulated step-shear
and melt relaxation experiments. In the latter case relaxation
is much slower, practically identical with that of the relaxed
melt, not subjected to shear.
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The space confinement strongly affects chain dynamics un-
der shear, even when the wall distance is much bigger than
2Rg0

of the chains under study. Steady-state values of Rg de-
crease with increasing confinement and they are attained after
shorter time.

Diffusion of beads and chains in the flowing melt is also
strongly modified by shear stress, including the displacements
in the x- and y-directions (perpendicular to the shear direction).
The diffusion of the chain center of mass shows an anomalous
behavior (sub- or superdiffusion) in all directions as a result of
the space confinement and shear.

In summary we show that in spite of the limitations of MC
simulation method used, it is possible to reproduce at least
qualitatively most of the shear effects known from the exper-
iment and NMD simulations. Using CMA algorithm we could,
however, simulate long, entangled chains on big lattices. It
made possible the investigations of microscopic phenomena
related to asymmetry of the system dynamics due to flow
and space confinement.
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